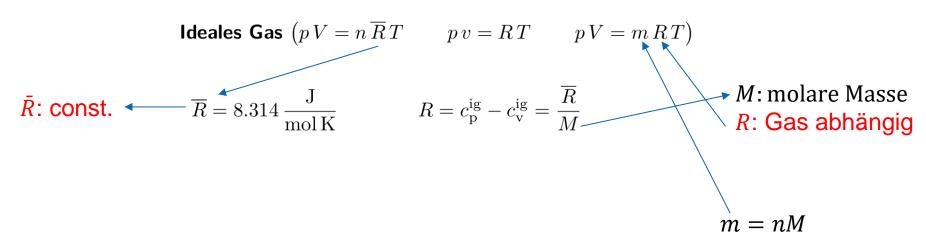
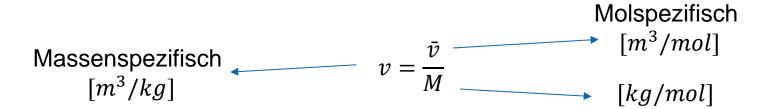


- Die Übungsstunde wird von mir aufgezeichnet!
- Nicht offiziell
- (Screen recording) Lade ich später auf YT hoch
- Keine Garantie für Qualität, es ist nur in der Not zu nutzen (Falls Krank…)





Ideales Gas

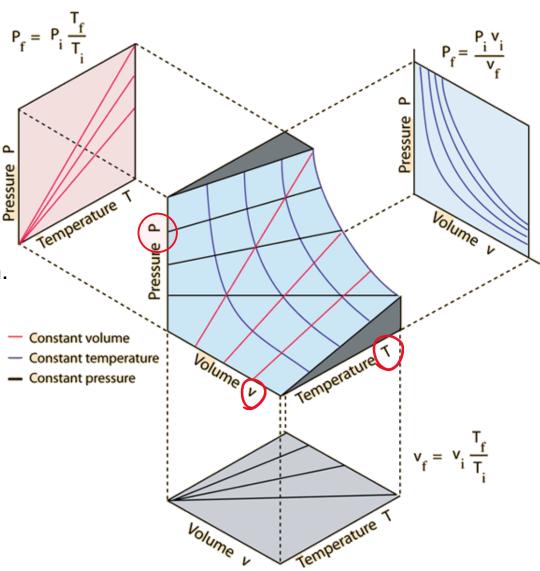
Ideales Gas = keine Wechselwirkung zwischen Molekülen
 Wenn man die Moleküle unendlich weit voneinander machen, dann keine Wechselwirkung mehr.
 Oder wenn man sie sehr heiß machen.

3 Stoffmodelle

n.ethz.ch/~juncfu LESE FE DSE SYSTEMS ENGINEERING

Ideales Gas

Ideales Gas
$$(pV = n\overline{R}T \qquad pv = RT \qquad pV = mRT)$$


$$pv = RT$$

$$pV = mRT)$$

$$\overline{R} = 8.314 \, \frac{\text{J}}{\text{mol K}}$$

$$\overline{R} = 8.314 \frac{\mathrm{J}}{\mathrm{mol \, K}}$$
 $R = c_{\mathrm{p}}^{\mathrm{ig}} - c_{\mathrm{v}}^{\mathrm{ig}} = \frac{\overline{R}}{M}$

IG Model p,v,T ist eine klar definierte Flächenfunktion. Wenn man 2 Variablen davon kennt, dann kann man die 3. ausrechnen.

n.ethz.ch/~juncfu

Zusammenhang u, h und p,v,T

Innere Energie: u = u(v, T)

Enthalpie: $h = h(p, T) = u + p \cdot v$

$$egin{aligned} extsf{Vol.} \ extsf{ZF} & H = U + p \, V \end{aligned}$$

Definition in U01

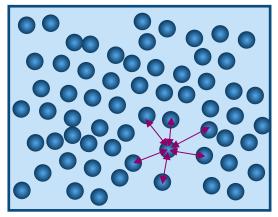
Meistens TAB-Wert

Allgemein:

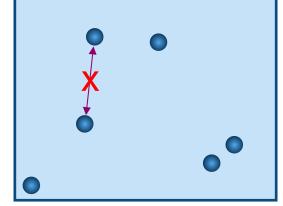
$$u = u(v, T)$$

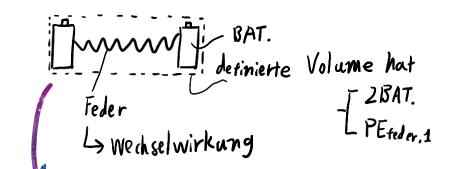
$$h=h(p,T)$$

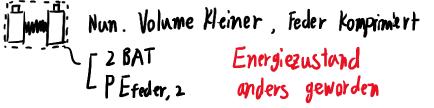
Ideales Gas


Ideales Gas:

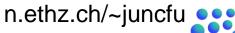
$$u^{ig} = u(\mathbf{p}, T)$$


$$h^{ig} = h(\mathbf{p}, T)$$


Nur die Funktion der Temp.


Realstoff

Ideales Gas



Kein Wechselwirkung

1 >> 2 BAT. = 2 BAT.

Energiczustand gleich

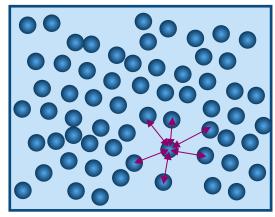
Zusammenhang u, h und p,v,T

Innere Energie: u = u(v, T)

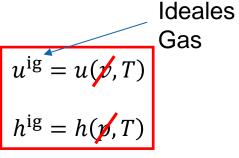
Enthalpie: $h = h(p, T) = u + p \cdot v$

H = U + p V

Meistens TAB-Wert

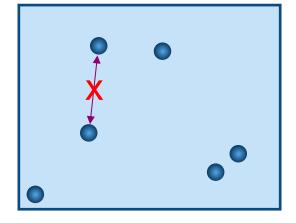

Definition in U01

Allgemein:


$$u = u(v, T)$$

$$h = h(p, T)$$

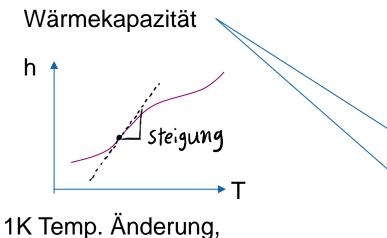
Realstoff



Ideales Gas:

Nur die Funktion der Temp.

Ideales Gas


Keine Wechselwirkung: innere Energie von Volume und Druck unabhängig

Dann ist U und H nur die Funktion der Temp.

$$H = U + pV$$
 $pV = mRT$

Zusammenhang u, h und p,v,T

wie viel Energie Änderung

Ideales Gas:

Ideales
Gas
$$u^{\text{ig}} = u(\cancel{p}, T)$$

$$h^{\text{ig}} = h(\cancel{p}, T)$$

Nur die Funktion der Temp.

Ideales Gas
$$(pV = n\overline{R}T \qquad pv = RT \qquad pV = mRT)$$

$$\overline{R} = 8.314 \frac{\mathrm{J}}{\mathrm{mol \, K}} \qquad R = c_{\mathrm{p}}^{\mathrm{ig}} - c_{\mathrm{v}}^{\mathrm{ig}} = \frac{\overline{R}}{M}$$

$$c_{\mathrm{v}}^{\mathrm{ig}}(T) = \left(\frac{\partial u}{\partial T}\right)_{v} \qquad \text{Wenn Volume const.}$$

$$c_{\mathrm{p}}^{\mathrm{ig}}(T) = \left(\frac{\partial h}{\partial T}\right)_{p} \qquad \text{Wenn Druck const.}$$

$$u^{\mathrm{ig}}\left(T_{2}
ight)-u^{\mathrm{ig}}\left(T_{1}
ight)=\int_{T_{1}}^{T_{2}}c_{\mathrm{v}}^{\mathrm{ig}}(T)\,\mathrm{d}T$$
 Cv für U Cp für H $h^{\mathrm{ig}}\left(T_{2}
ight)-h^{\mathrm{ig}}\left(T_{1}
ight)=\int_{T_{1}}^{T_{2}}c_{\mathrm{p}}^{\mathrm{ig}}(T)\,\mathrm{d}T$

Ideales vs. perfektes Gas

Ideales Gas
$$(pV = n\overline{R}T \qquad pv = RT \qquad pV = mRT)$$

$$pv = RT$$

$$pV = mRT$$

$$\overline{R} = 8.314 \frac{\mathrm{J}}{\mathrm{mol \, K}} \qquad \qquad R = c_{\mathrm{p}}^{\mathrm{ig}} - c_{\mathrm{v}}^{\mathrm{ig}} = \frac{\overline{R}}{M}$$

$$c_{\mathrm{v}}^{\mathrm{ig}}(T) = \left(\frac{\partial u}{\partial T}\right)_{v}$$

$$c_{\mathrm{p}}^{\mathrm{ig}}(T) = \left(\frac{\partial h}{\partial T}\right)_{p}$$
Einziger Unterschied
$$\kappa = \frac{c_{\mathrm{p}}^{\mathrm{ig}}}{c_{\mathrm{v}}^{\mathrm{ig}}}$$

$$u^{\mathrm{ig}}(T_{2}) - u^{\mathrm{ig}}(T_{1}) = \int_{T_{1}}^{T_{2}} c_{\mathrm{p}}^{\mathrm{ig}}(T) \, \mathrm{d}T$$

$$h^{\mathrm{ig}}(T_{2}) - h^{\mathrm{ig}}(T_{1}) = \int_{T_{1}}^{T_{2}} c_{\mathrm{p}}^{\mathrm{ig}}(T) \, \mathrm{d}T$$

Perfektes Gas $(pV = n\overline{R}T \qquad pv = RT \qquad pV = mRT)$ $c_{\rm p}^{\rm pg} = {\rm const.}$ $\kappa = \frac{c_{\rm p}^{\rm pg}}{c_{\rm pg}} = {\rm const.}$ $c_{\rm v}^{\rm pg} = {\rm const.}$ $u^{\text{pg}}(T_2) - u^{\text{pg}}(T_1) = c_{\text{v}}^{\text{pg}}(T_2 - T_1)$ $h^{\text{pg}}(T_2) - h^{\text{pg}}(T_1) = c_{\text{p}}^{\text{pg}}(T_2 - T_1)$

Immer noch nur die Funktion der Temp.

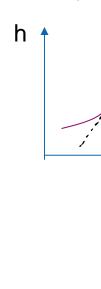
n.ethz.ch/~juncfu Lese zepse

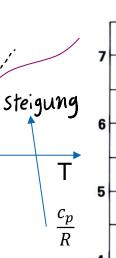
Ideales vs. perfektes Gas

Ideales Gas
$$(pV = n\overline{R}T$$

$$pv = RT$$

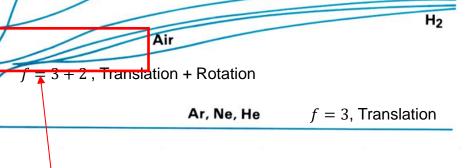
$$pV = mRT$$


$$\overline{R} = 8.314 \frac{\mathrm{J}}{\mathrm{mol \, K}}$$
 $R = c_\mathrm{p}^\mathrm{ig} - c_\mathrm{v}^\mathrm{ig} = \frac{\overline{R}}{M}$ $c_\mathrm{v}^\mathrm{ig}(T) = \left(\frac{\partial u}{\partial T}\right)_v$


$$\dot{\mathbf{p}}_{\mathbf{p}}^{\mathrm{ig}}(T) = \left(\frac{\partial h}{\partial T}\right)^{v}$$

$$\kappa = \frac{c_{\rm p}^{\rm lg}}{c_{\rm v}^{\rm ig}}$$

$$u^{\text{ig}}(T_2) - u^{\text{ig}}(T_1) = \int_{T_1}^{T_2} c_{\text{v}}^{\text{ig}}(T) dT$$


$$h^{\text{ig}}(T_2) - h^{\text{ig}}(T_1) = \int_{T_1}^{T_2} c_{\text{p}}^{\text{ig}}(T) dT$$

Translation + Rotation + Vibration +...

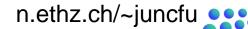
Perfektes Gas

$$c_{\rm v}^{\rm pg}={\rm const.}$$
 $c_{\rm p}^{\rm pg}={\rm const.}$ $\kappa=\frac{c_{\rm p}^{\rm pg}}{c_{\rm v}^{\rm pg}}={\rm const.}$


$$\kappa = \frac{c_{\rm p}^{\rm pg}}{c_{\rm v}^{\rm pg}} = {\rm const.}$$

$$u^{\text{pg}}(T_2) - u^{\text{pg}}(T_1) = c_{\text{v}}^{\text{pg}}(T_2 - T_1)$$

$$h^{\operatorname{pg}}\left(T_{2}\right)-h^{\operatorname{pg}}\left(T_{1}\right)=c_{\operatorname{p}}^{\operatorname{pg}}\left(T_{2}-T_{1}\right)$$



CO₂

perfekte Gase

3000

i.d.R. keine perfekten Gase!

Zustandsänderungen

Polytrope
$$pV^n = \text{const.}$$

Isobare
$$p = \text{const.} \quad (n \equiv 0)$$

Isotherme
$$T = \text{const.}$$

Isochore
$$v = \text{const.} \quad (n \to \infty)$$

Isenthalpe
$$h = \text{const.}$$

Isentrope
$$s = \text{const.}$$

$$p_1 \cdot v_1^n = p_2 \cdot v_2^n$$

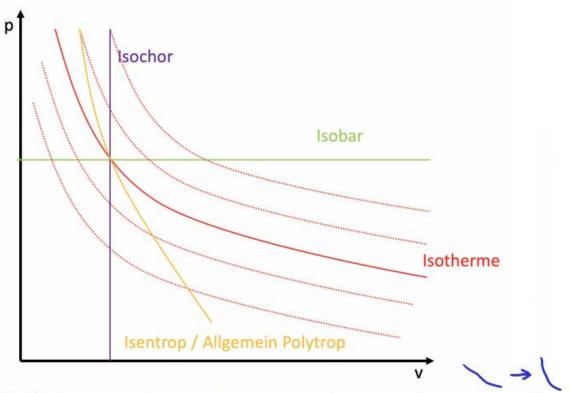
Gilt immer

Zustandsänderungen idealer Gase

Isotherme
$$n=1$$

Isentrope
$$n=\kappa=rac{c_{
m p}^{
m ig}}{c_{
m v}^{
m ig}}$$

Polytropes
$$\frac{T_2}{\text{Temperaturverh\"{a}ltnis}} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = \left(\frac{v_1}{v_2}\right)^{n-1}$$


Beziehung zw. R, c_p^{ig} , c_v^{ig} , M $R=c_{
m p}^{
m ig}-c_{
m v}^{
m ig}=rac{\overline{R}}{R}$

$$R = c_{\rm p}^{\rm ig} - c_{\rm v}^{\rm ig} = \frac{\overline{R}}{M}$$

n.ethz.ch/~juncfu LESE #EDSE SYSTEMS ENGINEERING

p-v-Diagramm

Auf der ZF, die ich verwendet habe, findet ihr auch das Graph.

Achtung: Je grösser n oder κ , desto steiler ist die Kurve im pv-Diagramm.

https://n.ethz.ch/~juncfu/Thermo 1 TA/my ZF Thermo 1/ZF rtim ThD-1 EF 2023-01-23.pdf

Achtung: Bei der Prüfung nur die ZF von der Institut!

Und TAB und TR.

Man kann was von der 3rd-Party ZF gucken oder lernen, aber bitte übt mehr mit der offiziellen ZF!

15

n.ethz.ch/~juncfu

Vorrechenübung

Aufgabe 2.1 ● ● ○ Kreisprozess ideales Gas

In einem geschlossenen System durchlaufen 1.5 kg Luft (ideales Gas) folgenden Kreisprozess:

Prozess 1–2: Isobare Expansion von 400 K auf 550 K

Prozess 2–3: Isotherme Expansion von 10 bar auf 7.5 bar

Prozess 3–4: Isochore Abkühlung

Prozess 4–1: Polytrope Kompression zum Ausgangszustand (n = 1.5)

a) Skizzieren Sie den Prozess im p-v-Diagramm.

Erstmal hilfreicher Formel finden!

Aus ZF:

4 Zustandsänderungen

Zustandsänderungen

Polytrope	$pV^n = \text{const}$
rolytrope	PV

(n: Polytropenexponent)

Isobare $p = \text{const.} \quad (n \equiv 0)$

Isotherme T = const.

Isochore $v = \text{const.} \quad (n \to \infty)$

Isenthalpe h = const.

Isentrope s = const.

Zustandsänderungen idealer Gase

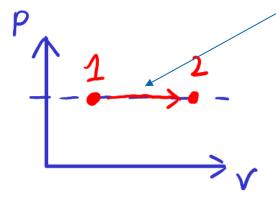
Isotherme n=1

Isentrope $n = \kappa = \frac{c_{\rm p}^{\rm ig}}{c_{\rm cv}^{\rm ig}}$

Polytropes $\frac{T_2}{\text{Temperaturverh\"{a}ltnis}} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = \left(\frac{v_1}{v_2}\right)^{n-1}$

Prozess 1–2:

Isobare Expansion von 400 K auf 550 K


Isobare

$$p = \text{const.} \quad (n \equiv 0)$$

isobarlinie

isobarlinie

Expansion = Volume vergrößern

Prozess 2-3: Isotherme Expansion von 10 bar auf 7.5 bar

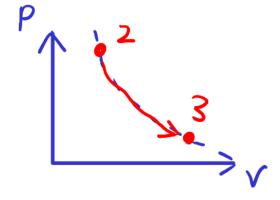
Isotherme T = const.

Isotherme n = 1

Polytrope $pV^n = \text{const.}$

(n: Polytropenexponent)

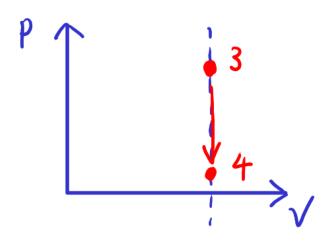

$$\sqrt{n} = const$$
 $\Rightarrow P_i V_i = C$


Herleitung zu isotherme Graph

$$\chi$$
-Achse: V

$$PV = Const. = C$$
 $Y - Achse : P$ $X - Achse : V$

$$= D P = \frac{C}{V} \Rightarrow Y = \frac{C}{X} = D$$



Prozess 3-4:

Isochore Abkühlung

Isochore

$$v = \text{const.} \quad (n \to \infty)$$

Falls Intuition nicht da, hier die Herleitung

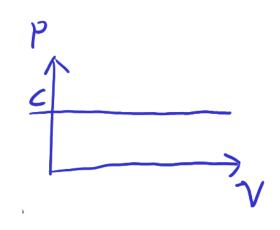
Ideales Gas
$$(pV = n\overline{R}T pv = RT pV = mRT)$$

$$PV = R T V = const. T \Rightarrow P$$

$$N\overline{R} = const.$$

$$= |V| = |V$$

$$pV^n = \text{const.}$$


(n: Polytropenexponent)

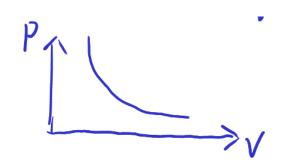
Steigung im Vergleich mit Isotherm?

$$PV^{\eta} = C \implies P = \frac{c}{v^{\eta}}$$

$$1) \rightarrow 0 :$$

$$= 0 \quad P = \frac{C}{V^0} = \frac{C}{1} = C$$

$$pV^n = \text{const.}$$


(n: Polytropenexponent)

Steigung im Vergleich mit Isotherm?

$$PV^{\eta} = C \implies P = \frac{c}{v^{\eta}}$$

$$\eta \Rightarrow 1 :$$

$$= 1 \rangle P = \frac{C}{V}$$

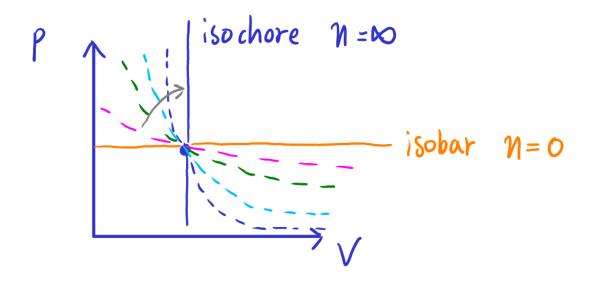
$$pV^n = \text{const.}$$

(n: Polytropenexponent)

Steigung im Vergleich mit Isotherm?

$$PV^{\eta} = C \implies P = \frac{c}{v^{\eta}}$$

$$\mathcal{N} \to \infty$$
 ; | | | | | | | | | |

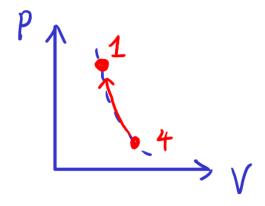

$$v = \text{const.} \quad (n \to \infty)$$

Polytrope $pV^n = \text{const.}$

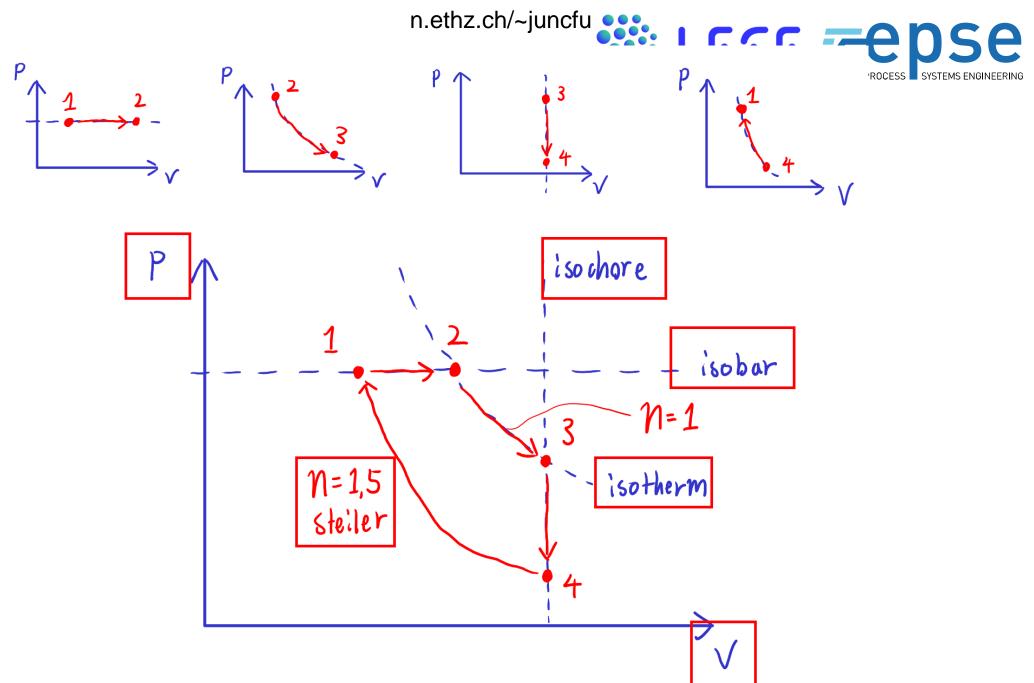
(n: Polytropenexponent)

Steigung im Vergleich mit Isotherm?

je größer n ist, desto steiler wird P-V tunc.



Polytrope


$$pV^n = \text{const.}$$

(n: Polytropenexponent)

n=1,5, = Steiler als isotherm n=1

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

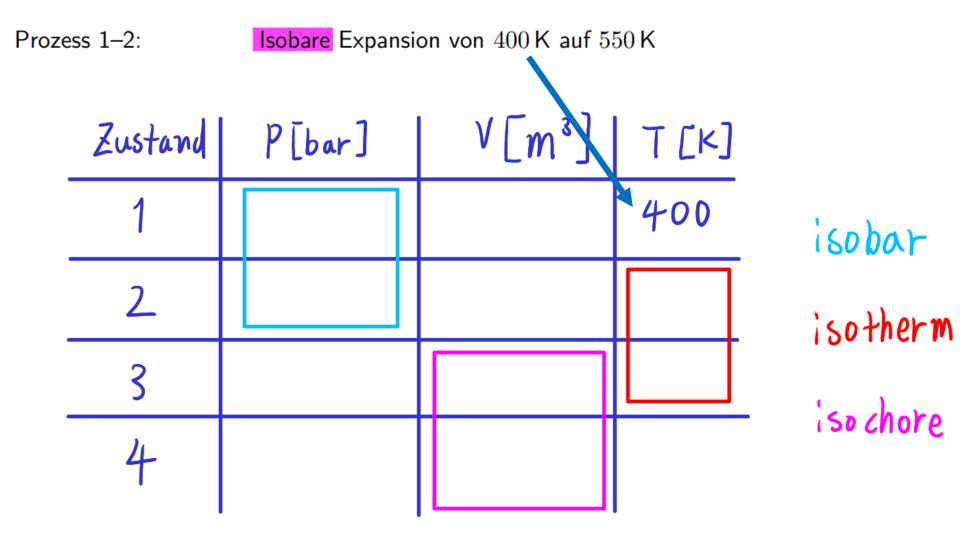
Ideales Gas
$$(pV = n\overline{R}T \qquad pv = RT \qquad pV = mRT)$$

$$pv = RT$$

$$pV = mRT$$

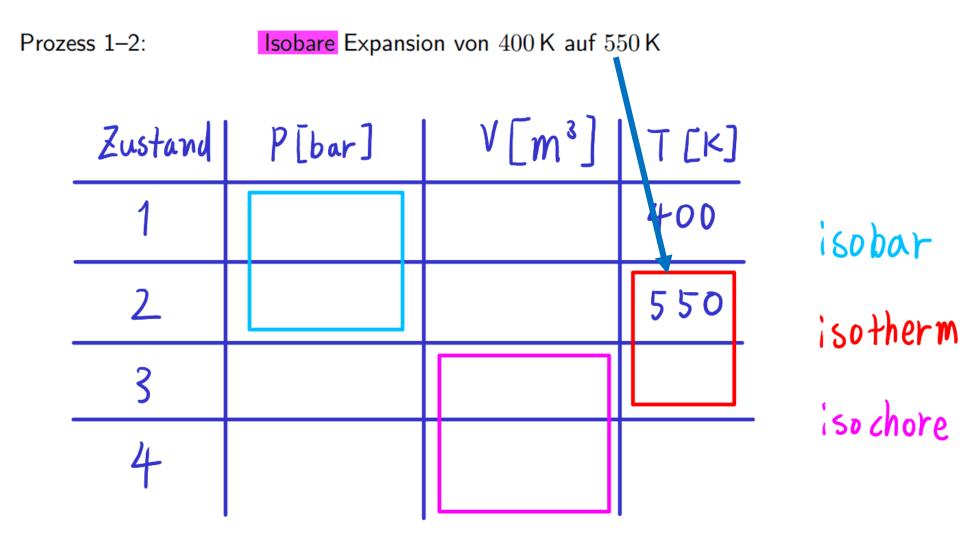
Empfehlen: PVT Tab zu machen, => Übersicht leichter für Korrektur

Zustand	دا	γ	T



Prozess 1–2: Isobare Expansion von $400\,\mathrm{K}$ auf $550\,\mathrm{K}$

Zustand	P[bar]	$V[m^3]$	T[K]	
1				isobar
2				isotherm
3				
4				isochore

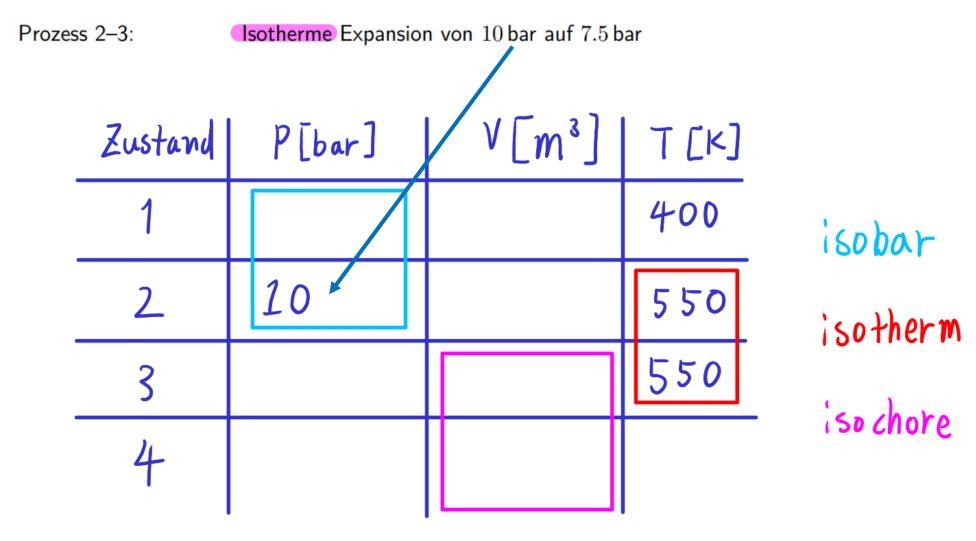


b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

P

Prozess 1–2: Isobare Expansion von 400 K auf 550 K			50 K		
	Zustand	P[bar]	V[m³]	T [K]	
	1			400	isobar
	2			550	isotherm
	3				- isochore
	4				150 CHOTE

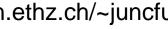

Prozess 2–3: Isotherme Expansion von 10 bar auf 7.5 bar

Zustand	P[bar]	$V[m^3]$	T[K]	
1			400	isobar
2			550	isotherm
3				isochore
4				120 61101 6

Prozess 2-3: Isotherme Expansion von $10 \, \mathrm{bar}$ auf $7.5 \, \mathrm{bar}$ $V[m^3]$ Zustand P[bar] 400 isobar 550 isotherm 550 iso chore

Prozess 2–3: Isotherme Expansion von 10 bar auf 7.5 bar

Zustand	P[bar]	$V[m^3]$	T [K]	
1	10		400	isobar
2	10		550	isotherm
3			550	isochore
4				120 611016



Prozess 2-3: Isotherme Expansion von $10\,\mathrm{bar}$ auf $7.5\,\mathrm{bar}$ Zustand T [K] P[bar] 10 400 isobar 20 550 isotherm 550 iso chore

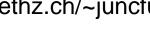
b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

-4 :	Isochore Abkühlı	ıng		
Zustand	P[bar]	V [m³]	T [K]	
1	10		400	isobar
2	10		550	isotherm
3	7,5		550	- isochore
4				150 61101 6
	1	Zustand P[bar] 1 10 2 20	Zustand P[bar] V[m³] 1 10 2 10	Zustand P[bar] V[m³] T[K] 1 10 400 2 10 550

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

Prozess 4-1:

Polytrope Kompression zum Ausgangszustand (n = 1.5)


?????

Zustand	P[bar]	$V[m^3]$	T[K]
1	10		400
2	10		550
3	7,5		550
4			

isobar

isotherm

iso chore

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

$$\mbox{Ideales Gas } \left(p \, V = n \, \overline{R} \, T \qquad p \, v = R \, T \right)$$

$$pv = RT$$

$$pV = mRT$$

$$\overline{R} = 8.314 \frac{\text{J}}{\text{mol K}}$$

$$\overline{R} = 8.314 \, rac{
m J}{
m mol\, K}$$
 $R = c_{
m p}^{
m ig} - c_{
m v}^{
m ig} = rac{\overline{R}}{M}$ stems engine

IG: P,V,T, Wenn man 2 Zustandsvariabel davon kennt, dann kann man das dritte ausrechnen

Zustand	P[bar]	$V[m^3]$	T[K]	
1	10		400	isobar
2	10		550	isotherm
3	7,5		550	
4				isochore
4				

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

Ideales Gas
$$\left(p\,V=n\,\overline{R}\,T\right)$$
 $p\,v=R\,T$ $p\,V=m\,R\,T$ $\overline{R}=8.314\,\frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}}$

$$R = c_{
m p}^{
m ig} - c_{
m v}^{
m ig} = rac{\overline{R}}{M}$$

1)
$$R = \frac{8.314 \left[\frac{\text{KJ}}{\text{kmol·k}} \right] \cdot \left[\frac{\text{kmol}}{\text{Kg}} \right] = 0.287 \frac{\text{KJ}}{\text{Kg·k}}}{\text{Kg·k}}$$

$$\text{mit } M_{\text{Luft}} = 28.97 \text{ Kg/kmol} \quad \text{TAB-A1}$$

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

Ideales Gas
$$(pV = n\overline{R}T)$$

$$pv = RT$$

$$pV = mRT$$

$$\overline{R} = 8.314 \frac{\text{J}}{\text{mol K}}$$

Ideales Gas
$$\left(p\,V = n\,\overline{R}\,T \qquad p\,v = R\,T \qquad p\,V = m\,R\,T\right) \qquad \overline{R} = 8.314\,\frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \qquad \qquad R = c_\mathrm{p}^\mathrm{ig} - c_\mathrm{v}^\mathrm{ig} = \frac{\overline{R}}{M}$$

$$\mathbb{Q} = 0.28 \times \frac{kJ}{kg \cdot k}$$

$$PV=mRT=VV_1=\frac{MLut+RT_1}{P_1}$$

P_1 , T_1 und m sind geg.

V₁ ist lösbar!

Achtung bei den Einheiten!!!

$$[m^{8}] = \frac{[Kg][\frac{kJ}{kg \cdot K}][K]}{[bar]}$$

$$[bar] \rightarrow Kein SI E:nheit$$

$$[bar] \rightarrow Faktor 1000$$

=> Um zu berechnen, muss die Einheit/Faktor angepasst werden

Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

$$R = 0,28 \times \frac{kJ}{kg \cdot k}$$
 $PV = mRT = D$ $V_1 = \frac{m_{Luft} RT_1}{P_1}$

$$[m^{8}] = \frac{[K9][\frac{kJ}{kg \cdot k}][K]}{[bar]} \qquad [bar] \rightarrow \text{Kein SI Einheit}}$$

$$[kJ] \rightarrow \text{Faktor 1000}$$

$$1 \text{ bar} = 10^{5} \text{ pa} = 10^{2} \text{ Kpa} = 100 \text{ Kpa} \qquad 1. \text{ Seite von TAB}}$$

$$[m^{3}] \sim \frac{[J]}{[Pa]} \sim \frac{[KJ]}{[Kpa]}$$

Wenn da oben [kJ] steht, [kPa] ist gut so, da die beiden [k] sich wegkreuzen.

Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

$$PV = MRT = V \qquad V_{I} = \frac{M_{L} utt R T_{I}}{P_{I}}$$

$$[m^{3}] = \frac{[Kg][\frac{kJ}{kg \cdot R}][K]}{[bar]} \qquad [bar] \rightarrow Kein SI Einheit RJ \rightarrow Faktor 1000$$

$$[M^3] = \frac{[Kg][\frac{kj}{kg \cdot k}][K]}{[bar]}$$

$$[bar] \rightarrow Kein SI Einheit$$
 $KJ \rightarrow Faktor 1000$

$$1 \text{ bar} = 10^5 \text{ Pa} = 10^2 \text{ Kpa} = 100 \text{ Kpa}$$

$$V_{1} = \frac{M_{Lutt} R T_{1}}{P_{1}} = \frac{1.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ k}}{10 \text{ bar}}$$

$$= \frac{1.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{1.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R} \cdot 400 \text{ kpa}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot 0.28 \text{ kg} \cdot \text{R}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot 0.28 \text{ kg}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg} \cdot 0.28 \text{ kg}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg} \cdot 0.28 \text{ kg}}{10 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg}}{100 \cdot 100 \text{ kpa}} = \frac{2.5 \text{ kg}}{100 \cdot 100 \text{$$

Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

$$PV = MRT = V \qquad V_{I} = \frac{M_{L}ut+ RT_{I}}{P_{I}}$$

$$[m^{8}] = \frac{[kg][\frac{kJ}{kg\cdot k}][k]}{[bar]} \qquad [bar] \rightarrow kein SI Einheit$$

$$[bar] \rightarrow Faktor 1000$$

$$[M^3] = \frac{[K9][\frac{k5}{k9 \cdot k}][K]}{[bar]}$$

$$1 \text{ bar} = 10^5 \text{ pa} = 10^2 \text{ Kpa} = 100 \text{ Kpa}$$

$$V_1 = \frac{M_{\text{Luft}} R T_1}{P_1} = \frac{1.5 \text{kg} \cdot 0.28 \text{ } \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \cdot 400 \text{ } \text{K}}{10 \text{ bar}}$$

$$= \frac{1.5 \log \cdot 0.28 \times 2.8 \cdot 400 \times 10^{-3}}{10.100 \times 10^{-3}} = \frac{0.172 \, \text{m}^3}{10.100 \times 10^{-3}}$$

Ziel:
$$[m^3] \sim \frac{[J]}{[Pa]} \sim \frac{[KJ]}{[KPa]}$$

Zustand	P[bar]	
1	10	

V[m³] T[K]

10 0,172 400 10 550

 2
 10
 550

 3
 7,5
 550

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

1)
$$R = 0.28 \times \frac{kJ}{kg \cdot k}$$
 $V_1 = 0.1 \times 2 \text{ m}^3$

Trick über Einheiten

TAB wert sind Meistens auf [bar] [k]

des wegen rechnet am bestens [bar] aut [kpa] um.

[m³][kpa][k][kg][kw][kg][k]...

Passen in der Rechnung Zusammen

A w KE mit [m/s] ergibt [J], diese muss zu [k]]
damit die Korrekter Faktor überall stimmen.

	Zustand	P[bar]	$V[m^3]$	T [K]
•	1	10	0,17.2	400
	2	10		550
•	3	7,5		550
	4			

b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

1)
$$R = 0.28 \times \frac{kJ}{kg \cdot k}$$
 $V_1 = 0.172 \text{ m}^3$

Analog:
$$V_2 = \frac{M_{\text{suft}} \cdot R \cdot T_2}{P_2} = 0.23 \times m^3$$

	Zustand	P[bar]	V[m³]	T [K]
•	1	10	0,172	400
	2	10	0,237	550
•	3	7,5		550
	4			

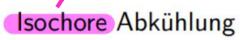
b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.

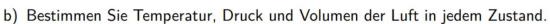
1)
$$R = 0.287 \frac{kJ}{kg \cdot k}$$
 $V_1 = 0.172 \text{ m}^3$

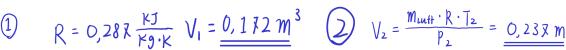
(3)
$$9e9$$
: $T_3 = 550 \,\text{K}$, $P_3 = 7.5 \,\text{bar} = 750 \,\text{Kpa}$

$$V_3 = \frac{M_{\text{Luft}} \cdot R \cdot T_3}{P_3} = 0.316 \,\text{m}^3$$

Zustand	P[bar]	\ [m³]	T[K]
1	10	0,172	400
2	10	0,237	550
3	7,5	0,316	550


b) Bestimmen Sie Temperatur, Druck und Volumen der Luft in jedem Zustand.


1
$$R = 0,28 \times \frac{kJ}{kg \cdot k}$$


$$R = 0.28 \times \frac{kJ}{kg \cdot k}$$
 $V_1 = 0.172 \text{ m}^3$

$$V_3 = \frac{M_{\text{Luft}} \cdot R \cdot T_3}{P_3} = \underline{0.316 \text{ m}}^3$$

Prozess 3–4:

3] =	$V_3 = \frac{M_{Lutt} \cdot R \cdot T_3}{P_3} = \underline{0.316 m}^3$

Zustand	P[bar]	\ [m3]	T [K]
1	10	0,17.2	400
2	10	0,237	550
3	7,5	0,316	550
4		0,316	

(1	L)
	ノ

geg:
$$V_3 = V_4 = 0.316 \,\text{m}^3$$
, $4 \rightarrow 1 \,\text{n=1.5}$

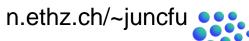
$$4 \rightarrow 1$$
 $n=1$

Aus ZF

Zustandsänderungen

Polytrope

$$pV^n = \text{const.}$$


(n: Polytropenexponent)

$$p_1 \cdot v_1^n = p_2 \cdot v_2^n$$

Gilt immer

$$p_4 V_4^{1,5} = p_1 V_1^{1,5}$$
 P, V von Zustand 1 bereits kennen

$$P_4 = P_1 \left(\frac{V_1}{V_4}\right)^{1,5} = 10 \text{ bar} \left(\frac{0.122 \text{ m}^3}{0.316 \text{ m}^3}\right)^{1,5} = 4.03 \text{ bar}$$

Zustand	P[bar]	$V[m^3]$	TCK
1	10	0,172	400
2	10	0,237	550

0,316

0,316

1
$$R = 0.28 \times \frac{\text{KJ}}{\text{Kg·K}} \text{ V}_1 = \frac{0.172 \text{ m}}{\text{P}_3}$$
 $V_2 = \frac{\text{Multi-R·T}_2}{\text{P}_2} = \frac{0.23 \times \text{m}}{\text{P}_3}$ $V_3 = \frac{\text{Multi-R·T}_3}{\text{P}_3} = \frac{0.316 \text{ m}}{\text{P}_3}$

$$V_2 = \frac{M_{inft} \cdot R \cdot T_2}{P_2} = 0.23 \times N$$

$$V_3 = \frac{M_{Luft} \cdot R \cdot T_3}{P_3} = \underline{0.316 \text{ m}}^3$$

4 geg:
$$V_3 = V_4 = 0.316 \,\text{m}^3$$
, $4 \rightarrow 1 \,\text{n} = 1.5$

$$P_4 = 4.03 \, bar$$

$$PV = mRT$$

$$\int_{T_4} \frac{P_4V_4}{mR} = 295,4K$$

Zustand

P[bar]

4,03

0,172 400

0,237 10

550

0,316 7,5

0,316

550

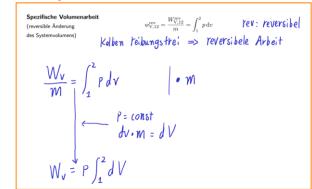
c) Berechnen Sie die Arbeit $W_{V,12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

Spezifische Volumenarbeit (reversible Änderung des Systemvolumens)

$$w_{V,12}^{rev} = \frac{W_{V,12}^{rev}}{m} = \int_{1}^{2} p \, dv$$

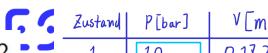
$$W_{V,12} = \int_{V_{1}}^{V_{2}} p \, dV$$

$$1 \rightarrow 2 : isobar \rightarrow \int_{V_{1}}^{V_{2}} p \, dV$$


$$= p \int_{V_{2}}^{V_{2}} dV - p \int_{V_{1}}^{V_{2}} V - V \int_{V_{1}}^{V_{2}} V \, dV$$

$$1 \rightarrow 2$$
: isobar \longrightarrow

$$= P_1 \int_{V_1}^{V_2} dV = P_1 \left[V_2 - V_1 \right]$$


$$=10.100 \text{ kpa} [0.23 \text{ km}^3 - 0.172 \text{ m}^3] = 65 \text{ KJ}$$

Herlettung von Formel aus ZF zu anwendbare Formel

 $V[m^3] \mid T[K]$ 0,172 400

$$W_{V_{J}12} = 65 \text{ KJ}$$

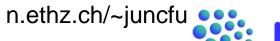
$$Q_{12} = ?$$

- einem Kolben:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{j} \dot{Q}_{j} - \sum_{n} \dot{W}_{\mathrm{V},n}$$

Geschlossenes System an
$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_j \dot{Q}_j - \sum_n \dot{W}_{\mathrm{V},n} \qquad \qquad \Delta E = E_2 - E_1 = \sum_j Q_j - \sum_n W_{\mathrm{V},n}$$
 nem Kolben:

Energie


Gesamte Energie: E = U + KE + PE

c) Berechnen Sie die Arbeit $W_{V,12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

Bilanzgleichung aufstellen

$$\Delta E = \Delta U + \Delta KE + \Delta PE = Q_{12} - W_{V,12}$$

Zustand	P[bar]	$V[m^3]$	T[K]
1	10	0,17.2	400
2	10	0,237	550
3	7,5	0,316	550
	4 . 2	24 (0 1

c) Berechnen Sie die Arbeit $W_{V,12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

$$W_{V, 12} = 65 \text{ KJ}$$

$$Q_{12} = ?$$

Vereinfachung
$$\Delta E = \Delta U + \Delta KE + \Delta RE = Q_{12} - W_{V,12}$$

Für Gase, KE, PE vernachlässigen

$$\Delta V = U_2 - V_1 = Q_{12} - W_{V,12}$$

Zustand P[bar] $V[m^3] \mid T[K]$ 0,172 10 400 0,237 550 10 7,5 0,316 550 0,316 4,03 295,4

c) Berechnen Sie die Arbeit $W_{V,12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

$$W_{V, 12} = 65 \text{ KJ}$$
 $Q_{12} = ?$

$$Q_{12} = ?$$

Lösen
$$\Delta V = U_2 - U_1 = Q_{12} - W_{V,12}$$

 $U_2 - U_1 = MU_2 - MU_1 = M[U_2 - U_1]$

$$U_2(T=550K)=396,86 \ KJ/kg$$

 $U_1(T=400K)=286,76 \ KJ/kg$

$$\Delta U = 166.05 \, \text{KJ}$$

$$\Rightarrow Q_{12} = \Delta U + W_{V,12} = 231,05 \text{ kJ}$$

$$ML: 231 \text{ kJ} \checkmark$$

- n.ethz.ch/~juncfu $_{\rm V,12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2. $_{\rm ENERGY\,\&\,PROCESS}$ Systems engineering
 - 2 Lösungsweg:
 - · Approximation: Air > Pertektes Gas Da die Temp. Ditterenz Klein ist. Cv(T) \(\times (v = const.
 - · Mittelwert der Temp. ZW Zustand 1 und 2 als T dann Cr für diese 7 tinden, Otherwise this Approx. not Valid ?
 - · dann mit Ansatz

Perfektes Gas

$$c_{\mathrm{v}}^{\mathrm{pg}} = \mathrm{const.}$$
 $c_{\mathrm{p}}^{\mathrm{pg}} = \mathrm{const.}$ $\kappa = \frac{c_{\mathrm{p}}^{\mathrm{pg}}}{c_{\mathrm{v}}^{\mathrm{pg}}} = \mathrm{const.}$ $u^{\mathrm{pg}}\left(T_{2}\right) - u^{\mathrm{pg}}\left(T_{1}\right) = c_{\mathrm{v}}^{\mathrm{pg}}\left(T_{2} - T_{1}\right)$

c) Berechnen Sie die Arbeit $W_{{
m V},12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

· Approximation: Air ≈ Pertektes Gas Da die Temp. Ditterenz Klein ist, Cv(T) \u2225 (v = const.

• Mittelwert der Temp. ZW Zustand 1 und 2 als T dann Cv für diese 7 tinden , Otherwise this Approx. Not Valid ?

Perfektes Gas
$$c_p^{\text{rec}} = \text{const.} \qquad c_p^{\text{rec}} = \text{const.} \qquad \kappa = \frac{c_p^{\text{rec}}}{c_p^{\text{rec}}} = \text{const.} \qquad \kappa = \frac{c_p^{\text{rec}}}{c_p^{\text{rec}}} = \frac{c_$$

2. Lösungsweg

1 Mitte Temp.

Zustan	nd P[bar]	$V[m^3]$	T [K]	
1	10	0,172	400	$=$ $=$ $\frac{1}{T} \left(\frac{1}{T+T} \right) - \frac{1}{2} \left(\frac{1}{1+20} + \frac{1}{1+20} \right) \sqrt{1+2} 1+2$
2	10	0,237	550	$T = \frac{1}{2} (T_1 + T_2) = \frac{1}{2} (400 + 550) k = 475 k$
3	7,5	0,316	550	·
4	4,03	0,316	295,4	

c) Berechnen Sie die Arbeit $W_{V,12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

• Approximation: Air × Pertektes Gas Da die Temp. Ditterenz Klein ist. Cv(T) × Cv = const.

Perfektes Gos
$$c_{i}^{\text{ps}} = \text{const.} \quad c_{i}^{\text{ps}} = \text{const.} \quad \kappa = \frac{c_{i}^{\text{ps}}}{c_{i}^{\text{ps}}} = \text{const.} \quad \kappa = \frac{c_{i}^{\text{ps}}}{c_{i}^{\text{ps}}} = c_{i}^{\text{ps}}$$

2 L'osungsweg

1) Mitte Temp.
$$T = \frac{1}{2}(T_1 + T_2) = \frac{1}{2}(400 + 550) K = 475 K$$

2 Cv finden
$$C_V @ 450K = 0, 733 \text{ kJ/kg·k}$$

 $C_V @ 500K = 0, 742 \text{ kJ/kg·k}$

Ideal Gas Specific Heats of Some Common Gases (kJ/kg·K)

	C _p	c_v	k	C _p	c _v	k	C _p
Temp. K	Air			Nitrogen, N ₂			
250	1.003	0.716	1.401	1.039	0.742	1.400	0.91
300	1.005	0.718	1.400	1.039	0.743	1.400	0.91
350	1.008	0.721	1.398	1.041	0.744	1.399	0.92
400	1.013	0.726	1.395	1.044	0.747	1.397	0.94
450	1.020	0.733	1.391	1.049	0.752	1.395	0.95
500	1.029	0.742	1.387	1.056	0.759	1.391	0.97

aus TAB-A20

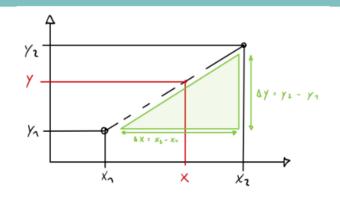
475K nicht auf TAB

c) Berechnen Sie die Arbeit $W_{V,12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

· Approximation: Air > Pertektes Gas Da die Temp. Ditterenz Klein ist. Cv(T) = (v = const. • Mittelwert der Temp. ZW Zustand 1 und 2 als T dann Cv für diese 7 tinden, Otherwise this Approx. Not Valid ? · dann mit Ansatz

2 Losungsweg

- 1) Mitte Temp. $T = \frac{1}{2}(T_1 + T_2) = \frac{1}{2}(400 + 550) K = 475 K$
- 2 Cv finden Cv@ 450K = 0, 733 KJ/kg·k Cv@500K = 0, 742 KJ/kg.K


lerp. lerp. steht für "linear interpolation"

aus TAB-A20

475K nicht auf TAB

Tabellen-Werte Linear Interpolieren

$$\mathbf{y} = \frac{y_2 - y_1}{x_2 - x_1} \cdot (\mathbf{x} - x_1) + y_1$$

c) Berechnen Sie die Arbeit $W_{{
m V},12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

• Approximation: Air \gg Pertektes Gas

Da die Temp. Ditterenz Klein ist. $C_V(T) \approx C_V = const.$

- Mittelwert der Temp. ZW Zustand 1 und 2 als T
 dann Cv f

 ür diese T tinden, Otherwise this Approx. Not Valid P
- dann mit Ansatz Perfektes Gas $c_{i}^{pc} = \operatorname{const.} \quad c_{i}^{pc} = \operatorname{const.} \quad \kappa = \frac{c_{i}^{pc}}{c_{i}^{pc}} = \operatorname{const.}$ $u^{pc}(T_{i}) = u^{pc}(T_{i}) = c_{i}^{pc}(T_{i} T_{i})$

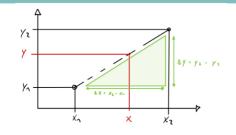
2 Lösungsweg

(1) Mitte Temp.
$$\overline{T} = \frac{1}{2} (T_1 + T_2) = \frac{1}{2} (400 + 550) K = 475 K$$

2 Cv finden
$$C_V @ 450K = 0,733 \ \frac{kJ}{kg\cdot k}$$

 $C_V @ 500K = 0,742 \ \frac{kJ}{kg\cdot k}$

aus TAB-A20


475K nicht auf TAB

lerp.

lerp. Steht für "linear interpolation"

Tabellen-Werte Linear Interpolieren

$$\mathbf{y} = \frac{y_2 - y_1}{x_2 - x_1} \cdot (\mathbf{x} - x_1) + y_1$$

$$c_v@475K = \frac{(0.742 - 0.733)\frac{kJ}{kg \cdot K}}{(500 - 450)K} \cdot (475K - 450K) + 0.733\frac{kJ}{kg \cdot K}$$

c) Berechnen Sie die Arbeit $W_{\mathrm{V},12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

Approximation: Air ≈ Pertektes Gas
 Da die Temp Ditterenz Klein ist, Cv(T) ≈ Cv = const.
 Mittelwert der Temp. ZW Zustand 1 und 2 als T
 dann Cv für diese T finden , Otherwise this Approx. Not Valid 8

 dann Mit Ansatz
 Pertektes Gas
 dann Mit Ansatz

2 L'osungsweg

1) Mitte Temp.
$$T = \frac{1}{2}(T_1 + T_2) = \frac{1}{2}(400 + 550) K = 475 K$$

2 Cv finden
$$C_V @ 450K = 0, 733 \ kJ/kg\cdot k$$

 $C_V @ 500K = 0, 742 \ kJ/kg\cdot K$

aus TAB-A20

475K nicht auf TAB

(erp. 475K ist Mittelwert von 450K und 500K

$$C_V = \frac{1}{2}(0,733 + 0,742) \frac{ky}{kg \cdot k} = 0,7375 \frac{ky}{kg \cdot k}$$

c) Berechnen Sie die Arbeit $W_{\mathrm{V},12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

• Approximation: Air \gg Pertektes Gas

Da die Temp Ditterenz Klein ist, $C_V(T) \propto C_V = const.$

- Mittelwert der Temp. ZW Zustand 1 und 2 als T dann Cv für diese T tinden, Otherwise this Approx. Not Valid ?
- d 4 $\gamma\gamma\gamma$ m': † $A_n \leq A^{\dagger} \geq \frac{e^{-\epsilon}}{e^{\epsilon}} = const.$ $e^{-\epsilon} = const.$ $e^{-\epsilon} = \frac{e^{\epsilon}}{e^{\epsilon}} = const.$ $e^{-\epsilon} = \frac{e^{\epsilon}}{e^{\epsilon}} = \frac{e^{\epsilon}}{e^{\epsilon}} = \frac{e^{-\epsilon}}{e^{\epsilon}} = \frac{e^{\epsilon}}{e^{\epsilon}} = \frac{e^{-\epsilon}}{e^{\epsilon}} =$

- 2 Lösungsweg
 - 1) Mitte Temp. $T = \frac{1}{2}(T_1 + T_2) = \frac{1}{2}(400 + 550) K = 475 K$
 - 2 Cv finden Cv = = (0,733 + 0,742) Ky/kg·k = 0,7375 KJ/kg·K
 - 3 Lösen

c) Berechnen Sie die Arbeit $W_{{
m V},12}$ und den Wärmeübergang Q_{12} von Zustand 1 nach 2.

• Approximation: Air \Rightarrow Pertektes Gas

Da die Temp Ditterenz Klein ist, $C_V(T) \not\simeq C_V = const.$

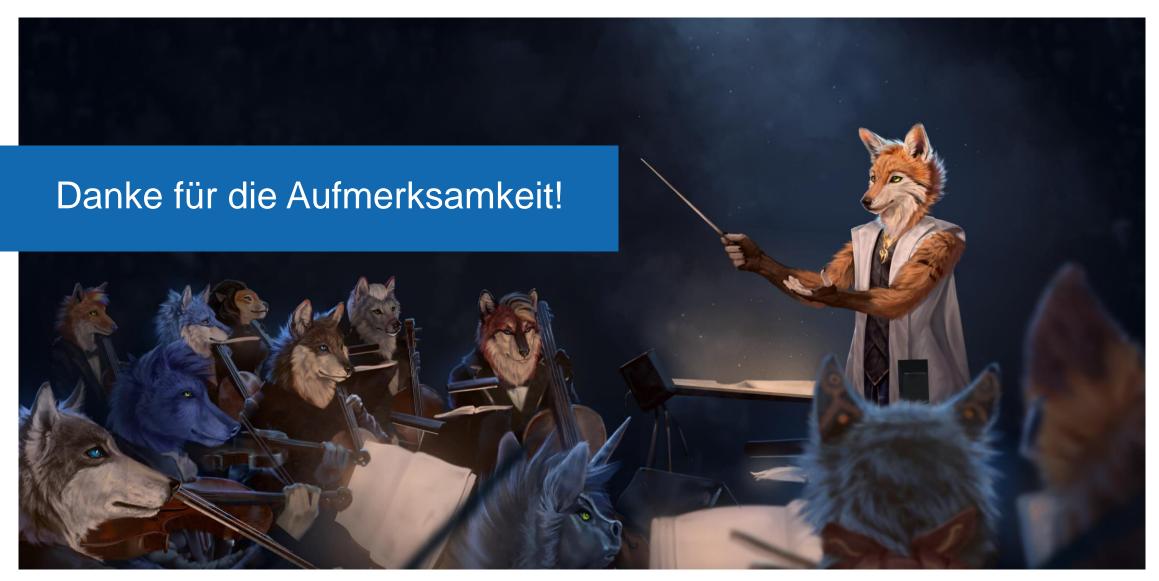
- Mittolwert der Temp. ZW Zustand 1 und 2 als T dann Cv für diese T tinden , Otherwise this Approx. Not Valid ?
- dann mit Ansatz Perfektes Gas $c_r^{eq} = \operatorname{const.} \quad c_r^{eq} = \operatorname{const.} \quad \kappa = \frac{c_r^{eq}}{c_r^{eq}} = \operatorname{const.}$ $u^{eq}(T_1) = u^{eq}(T_1) = e^{eq}(T_1 T_1)$

2 L'osungsweg

- 1) Mitte Temp. $T = \frac{1}{2}(T_1 + T_2) = \frac{1}{2}(400 + 550) K = 475 K$
- 2 Cv finden $C_V = \frac{1}{2}(0,733 + 0,742) \frac{ky}{kg \cdot k} = 0,7375 \frac{ky}{kg \cdot k}$
- 3 Lösen

$$\Delta U_{12} = 165,9375 \text{ KJ}$$
 $\Rightarrow Q_{12} = \Delta U + W_{V,12} = 230,9375 \text{ KJ}$

Hier sieht man auch, 2 Lösungsweg gleiche - änhliche Resultat lietert, aber einer ist deutlich Komplizierter.


Tipp: Wenn IG, Falls möglich, immer TAB-Wert* nehmen

schnell für ULT), h(T), mach keine IG -> PG Approximation of Langson

Falls PG, wird es Klar in Autgabestellung angegeben, Cp. Cv werden dabei auch geg. Dann muss man nur damit berechnen und Keine u(t), h(t) TAB-Wert*?

— * TAB-A22 , USW.

